Вычисление прямых и косвенных погрешностей. Погрешность косвенного измерения

Расчет погрешностей при прямых и косвенных измерениях

Под измерением понимают сравнение измеряемой величины с другой величиной, принятой за единицу измерения . Измерения выполняются опытным путем с помощью специальных технических средств.

Прямыми измерениями называются измерения, результат которых получается непосредственно из опытных данных (например, измерение длины линейкой, времени – секундомером, температуры – термометром). Косвенными измерениями называются измерения, при которых искомое значение величины находят на основании известной зависимости между этой величиной и величинами, значения которых получают в процессе прямых измерений (например, определение скорости по пройденному пути и времени https://pandia.ru/text/78/464/images/image002_23.png" width="65" height="21 src=">).

Всякое измерение, как бы оно тщательно не было выполнено, обязательно сопровождается погрешностью (ошибкой) – отклонением результата измерений от истинного значения измеряемой величины.

Систематические погрешности – это погрешности, величина которых одинакова во всех измерениях, проводящихся одним и тем же методом с помощью одних и тех же измерительных приборов, в одних и тех же условиях. Систематические погрешности происходят:

В результате несовершенства приборов, используемых при измерениях (например, стрелка амперметра может быть отклонена от нулевого деления в отсутствие тока; у коромысла весов могут быть неравные плечи и др.);

В результате недостаточно полной разработки теории метода измерений, т. е. метод измерений содержит в себе источник ошибок (например, возникает ошибка, когда в калориметрических работах не учитывается потеря тепла в окружающую среду или когда взвешивание на аналитических весах производится без учета выталкивающей силы воздуха);

В результате того, что не учитывается изменение условий опыта (например, при долговременном прохождении тока по цепи в результате теплового действия тока меняются электрические параметры цепи).

Систематические погрешности можно исключить, если изучить особенности приборов, полнее разработать теорию опыта и на основе этого вносить поправки в результаты измерений.

Случайные погрешности – это погрешности, величина которых различна даже для измерений, выполненных одинаковым образом. Причины их кроются как в несовершенстве наших органов чувств, так и во многих других обстоятельствах, сопровождающих измерения, и которые нельзя учесть заранее (случайные ошибки возникают, например, если равенство освещенностей полей фотометра устанавливается на глаз; если момент максимального отклонения математического маятника определяется на глаз; при нахождении момента звукового резонанса на слух; при взвешивании на аналитических весах, если колебания пола и стен передаются весам и т. д.).

Случайных погрешностей избежать нельзя. Их возникновение проявляется в том, что при повторении измерений одной и той же величины с одинаковой тщательностью получаются числовые результаты, отличающиеся друг от друга. Поэтому, если при повторении измерений получались одинаковые значения, то это указывает не на отсутствие случайных погрешностей, а на недостаточную чувствительность метода измерений.

Случайные погрешности изменяют результат как в одну, так и в другую сторону от истинного значения, поэтому, чтобы уменьшить влияние случайных ошибок на результат измерений, обычно многократно повторяют измерения и берут среднее арифметическое всех результатов измерений.

Заведомо неверные результаты - промахи возникают вследствие нарушения основных условий измерения, в результате невнимательности или небрежности экспериментатора. Например, при плохом освещении вместо “3” записывают “8”; из-за того, что экспериментатора отвлекают, он может сбиться при подсчете количества колебаний маятника; из-за небрежности или невнимательности он может перепутать массы грузов при определении жесткости пружины и т. д. Внешним признаком промаха является резкое отличие результата по величине от результатов остальных измерений. При обнаружении промаха результат измерения следует сразу отбросить, а само измерение повторить. Выявлению промахов способствует также сравнение результатов измерений, полученных разными экспериментаторами.

Измерить физическую величину это значит найти доверительный интервал , в котором лежит ее истинное значение https://pandia.ru/text/78/464/images/image005_14.png" width="16 height=21" height="21">..png" width="21" height="17 src=">.png" width="31" height="21 src="> случаев истинное значение измеряемой величины попадет в доверительный интервал. Величина выражается или в долях единицы, или в процентах. При большинстве измерений ограничиваются доверительной вероятностью 0,9 или 0,95. Иногда, когда требуется чрезвычайно высокая степень надежности, задают доверительную вероятность 0,999. Наряду с доверительной вероятностью часто пользуются уровнем значимости , который задает вероятность того, истинное значение не попадает в доверительный интервал. Результат измерения представляют в виде

где https://pandia.ru/text/78/464/images/image012_8.png" width="23" height="19"> – абсолютная погрешность. Таким образом, границы интервала , https://pandia.ru/text/78/464/images/image005_14.png" width="16" height="21"> лежит в пределах этого интервала.

Для того чтобы найти и , выполняют серию однократных измерений. Рассмотрим конкретный пример..png" width="71" height="23 src=">; ; https://pandia.ru/text/78/464/images/image019_5.png" width="72" height="23">.png" width="72" height="24">. Значения могут и повторяться, как значения и https://pandia.ru/text/78/464/images/image024_4.png" width="48 height=15" height="15">.png" width="52" height="21">. Соответственно уровень значимости .

Среднее значение измеряемой величины

Измерительный прибор также вносит свой вклад в погрешность измерений. Эта погрешность обусловлена конструкцией прибора (трением в оси стрелочного прибора, округлением, производимым цифровым или дискретным стрелочным прибором и пр.). По своей природе это систематическая ошибка, но ни величина, ни знак ее для данного конкретного прибора неизвестны. Приборную погрешность оценивают в процессе испытаний большой серии однотипных приборов.

Нормированный ряд классов точности измерительных приборов включает такие значения: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Класс точности прибора равен выраженной в процентах относительной ошибке прибора по отношению к полному диапазону шкалы. Паспортная погрешность прибора

Рассмотрим сначала случай, когда величина у зависит только от одной переменной х , которая находится прямым измерением,

Среднее арифметическое <y > можно найти, подставив в (8) вместо х среднее арифметическое <х >.

.

Абсолютную погрешность можно рассматривать как приращение функции (8) при приращении аргумента ∆х (полная погрешность измеряемой величины х ). При малых значениях ∆х она приближенно равна дифференциалу функции

, (9)

где - производная функции, вычисленная при . Относительная погрешность будет равна

.

Пусть определяемая величина у является функцией нескольких переменных х i ,

. (10)

Предполагается, что погрешности всех величин в рабочей формуле носят случайный характер, независимы и рассчитаны с одной и той же доверительной вероятностью (например Р = 0,95). Такую же доверительную вероятность будет иметь и погрешность искомой величины. В этом случае наиболее вероятное значение величины <у > определяют по формуле (10), используя для расчета наиболее вероятные значения величин х i , т. е. их средние значения:

<у > = f (<x 1 >, <x 2 >, …,<x i >, …,<x m >).

В этом случае абсолютная погрешность окончательного результата Δу определяется по формуле

, (11)

где ∂у /∂х i – частные производные функции у по аргументам х i , вычисленные для наиболее вероятных значений величин х i . Частная производная – это производная, которая вычисляется от функции у по аргументу х i при условии, что все остальные аргументы считаются постоянными.

Относительную погрешность величины у получим, поделив ∆у на <у>

. (12)

Принимая во внимание, что (1/у ) dy/dx представляет производную по х от натурального логарифма у относительную погрешность можно записать так

. (13)

Формулу (12) удобнее использовать в тех случаях, когда в зависимости (10) измеряемые величины х i входят, в основном, в виде слагаемых, а формула (13) является удобной для расчетов тогда, когда (10) представляет собой произведения величин х i . В последнем случае предварительное логарифмирование выражения (10) существенно упрощает вид частных производных. Измеряемая величина у является величиной размерной и логарифмировать размерную величину нельзя. Чтобы устранить эту некорректность, нужно разделить у на постоянную, имеющую данную размерность. После логарифмирования получится дополнительное слагаемое, которое не зависит от величин х i и поэтому исчезнет при взятии частных производных, так как производная от постоянной величины равна нулю. Поэтому при логарифмировании наличие такого слагаемого просто подразумевается.



Учитывая простую связь между абсолютной и относительной погрешностями ε у = Δу /<у >, легко по известной величине Δу вычислить ε у и наоборот.

Функциональная связь между погрешностями прямых измерений и погрешностью косвенного измерения для некоторых простых случаев приведена в табл. 3.

Рассмотрим некоторые особые случаи, возникающие при вычислении погрешностей измерений. Приведенные выше формулы для расчета погрешностей косвенных измерений справедливы только тогда, когда все х i независимые величины и измерены различными приборами и методами. На практике это условие не всегда соблюдается. Например, если какие-либо физические величины в зависимости (10) измеряются одним и тем же прибором, то приборные погрешности Δх i пр этих величин уже не будут независимыми, и приборная погрешность косвенно измеряемой величины Δу пр в этом случае будет несколько больше, чем при «квадратичном суммировании». Например, если площадь пластины длиной l и шириной b измерены одним штангенциркулем, то относительная приборная погрешность косвенного измерения будет

(ΔS/S ) пр = (Δl /l ) пр + (Δb/b ) пр,

т.е. погрешности суммируются арифметически (погрешности Δl пр и Δb пр одного знака и их величины одинаковы), вместо относительной приборной погрешности

при независимых погрешностях.

Таблица 3

Функциональная связь погрешностей прямых и косвенных измерений

Рабочая формула Формула для расчета погрешности

При проведении измерений возможны случаи, когда величины х i имеют разные значения, специально изменяемые или задаваемые во время эксперимента, например, вязкость жидкости по методу Пуазейля определяют для разной высоты столба жидкости над капилляром, или ускорение свободного падения g определяют с помощью математического маятника для разных длин). В таких случаях следует вычислять значение косвенно измеряемой величины у в каждом из n опытов по отдельности, а в качестве наиболее вероятного значения ее брать среднее значение, т.е. . Случайная погрешность Δу сл вычисляется как погрешность при прямом измерении. Вычисление приборной погрешности Δу пр производится через частные производные по формуле (11), а окончательная полная погрешность косвенно измеряемой величины подсчитывается по формуле

В физических экспериментах чаще бывает так, что искомая физическая величина сама на опыте измерена быть не может, а является функцией других величин, измеряемых непосредственно. Например, чтобы определить объём цилиндра, надо измерить диаметр D и высоту h , а затем вычислить объем по формуле

Величины D и h будут измерены с некоторой ошибкой. Следовательно, вычисленная величина V получится также с некоторой ошибкой. Надо уметь выражать погрешность вычисленной величины через погрешности измеренных величин.

Как и при прямых измерениях можно вычислять среднюю абсолютную (среднюю арифметическую) ошибку или среднюю квадратичную ошибку.

Общие правила вычисления ошибок для обоих случаев выводятся с помощью дифференциального исчисления.

Пусть искомая величина φ является функцией нескольких переменных Х, У, Z

φ(Х, У, Z …).

Путем прямых измерений мы можем найти величины , а также оценить их средние абсолютные ошибки … или средние квадратичные ошибки s Х, s У, s Z …

Тогда средняя арифметическая погрешность Dj вычисляется по формуле

где - частные производные от φ по Х, У, Z. Они вычисляются для средних значений …

Средняя квадратичная погрешность вычисляется по формуле



Пример. Выведем формулы погрешности для вычисления объёма цилиндра.

а) Средняя арифметическая погрешность.

Величины D и h измеряются соответственно с ошибкой DD и Dh.

б) Средняя квадратичная погрешность.

Величины D и h измеряются соответственно с ошибкой s D , s h .

Погрешность величины объёма будет равна

Если формула представляет выражение удобное для логарифмирования (то есть произведение, дробь, степень), то удобнее вначале вычислять относительную погрешность. Для этого (в случае средней арифметической погрешности) надо проделать следующее.

1. Прологарифмировать выражение.

2. Продифференцировать его.

3. Объединить все члены с одинаковым дифференциалом и вынести его за скобки.

4. Взять выражение перед различными дифференциалами по модулю.

5. Заменить значки дифференциалов d на значки абсолютной погрешности D.

В итоге получится формула для относительной погрешности

Затем, зная e, можно вычислить абсолютную погрешность Dj

Пример.

Аналогично можно записать относительную среднюю квадратичную погрешность

Правила представления результатов измерения следующие:

1) погрешность должна округляться до одной значащей цифры:

правильно Dj = 0,04,

неправильно - Dj = 0,0382;

2) последняя значащая цифра результата должна быть того же порядка величины, что и погрешность:

правильно j = 9,83±0,03,

неправильно - j = 9,826±0,03;

3) если результат имеет очень большую или очень малую величину, необходимо использовать показательную форму записи - одну и ту же для результата и его погрешности, причем запятая десятичной дроби должна следовать за первой значащей цифрой результата:

правильно - j = (5,27±0,03)×10 -5 ,

неправильно - j = 0,0000527±0,0000003,

j = 5,27×10 -5 ±0,0000003,

j = = 0,0000527±3×10 -7 ,

j = (527±3)×10 -7 ,

j = (0,527±0,003) ×10 -4 .

4) Если результат имеет размерность, ее необходимо указать:

правильно – g=(9,82±0,02) м/c 2 ,

неправильно – g=(9,82±0,02).

Правила построения графиков

1. Графики строятся на миллиметровой бумаге.

2. Перед построением графика необходимо четко определить, какая переменная величина является аргументом, а какая функцией. Значения аргумента откладываются на оси абсцисс (ось х ), значения функции - на оси ординат (ось у ).

3. Из экспериментальных данных определить пределы изменения аргумента и функции.

4. Указать физические величины, откладываемые на координатных осях, и обозначить единицы величин.

5. Нанести на график экспериментальные точки, обозначив их (крестиком, кружочком, жирной точкой).

6. Провести через экспериментальные точки плавную кривую (прямую) так, чтобы эти точки приблизительно в равном количестве располагались по обе стороны от кривой.

В результате прямого измерения получается не истинное значение х измеряемой величины, а серия изn значений . Пусть теперь

Суммируя последнее равенство, получим

(7)

где средне арифметическое измеренных значений. Таким образом,

(8)

Из этого простого результата вытекают весьма важные следствия. Действительно, при

и
.

значит, при бесконечно большом числе измерений
и, следовательно, при конечныхn результат тем ближе к среднему арифметическому, чем больше число измерений. Отсюда также следует, что при оценке Х в качестве
целесообразно взять .

На практике n конечно и
. В задачу математической теории случайной погрешности входит оценка интервала

в котором заключено истинное значение измеряемой величины. Интервал (9) называется доверительным интервалом , а величина
абсолютной погрешностью результата серии измерений. Теория оценки х достаточно сложна, поэтому здесь будут рассмотрены лишь её основные результаты. Прежде всего нужно отметить, что, поскольку х случайная величина, ошибка х может быть определенна лишь с той или иной степенью надежности α , которую также называют доверительной вероятностью. Доверительная вероятность – это вероятность того, что истинное значение измеряемой величины х попадает в доверительный интервал (9). Если положить α =1 (100%), то это будет соответствовать достоверному событию, т.е. вероятности того, что х принимает какое-то значение в интервале (
). При этом
. Очевидно, такой выбор надёжностиα нецелесообразен. При малых α доверительный интервал х определяется с малой достоверностью. В дальнейшем мы будем полагать α =0.90 или 0.95. Доверительный интервал и надёжность взаимосвязаны. Для оценки границ доверительного интервала английский математик В. Госсет (публиковавший свои работы под псевдонимом Стьюдент) ввёл в 1908 г. коэффициент:

(10)

равный отношению погрешности х к средней квадратичной ошибке*

(11)

Коэффициент зависит от надёжностиα , а также от числа измерений n и называется коэффициентом Стьюдента. Этот коэффициент табулирован (см. приложение 1), поэтому рассчитав и задав доверительную вероятностьα , нетрудно найти случайную ошибку:

(12)

Расчёт погрешности косвенных измерений.

При косвенных измерениях измеряемая величина f находится из функциональной зависимости:

где x , y , z – результаты прямых измерений. Формулу для f можно получить, заменив в (2) дифференциалы погрешностями и взяв все слагаемые по модулю

(13)

Соотношение (13) рекомендуется для оценки погрешности f , обусловленной приборными погрешностями величины x, y, z, … Для оценки погрешности, связанной со случайными ошибками прямых измерений, рекомендуется соотношение:

(14)

Следует правда отметить, что формулы (13) и (14) приводят практически к одинаковым результатам. Производные в (13) и (14) берутся при средних, т.е. при измеренных значениях аргументов.

Очень часто функция f представлена степенной зависимостью от аргументов

(15)

где c, n, m и p – постоянные. Частным случаями формулы (15) являются соотнощения
,
и др.

Задание . Покажите, что для функции вида (15) формулы (13) и (14) принимают вид:


(13)

(14)

Из соотношений (13) и (14) следует, что для степенных функций расчёт погрещностей существенно упрощается, причём целесообразно сначала найти относительную погрешность, которая выражается через относительную погрешность прямых измерений, а затем найти абсолютную погрешность

(16)

Под понимается функция от средних (измеренных) значений аргументов

.

Алгоритм расчета погрешностей

- Для прямых измерений

1. Вычислить среднее арифметическое результатов
серии из n измерений:

Замечание: при расчете удобнее исходить из формулы:

где - любое удобное значение, близкое к.

2. Найти отклонения отдельных измерений от среднего значения

Замечание. При
можно положить
и рассчитывать по формуле

5. Если
,
то случайную ошибку можно не рас­считывать.

6. В противном случае задать доверительную вероятность и найти по таблице коэффициент Стьюдента .

Замечание 1. Если приборная погрешность
имеет тот же порядок величины что и, то абсолютная погрешность результата серии измерений находится по формуле:

где
Практически в качестве
можно взять табличное значение
отвечающее самому большо­му из приведенных в ней значенийп (например, п=500 ) .

Замечание 2. При большом числе измерений
можно по­ложить

где
.

8. Результат измерения представить в виде:

- Для косвенных измерений

Погрешность
косвенного измерения можно рассчитать по одной из формул (13), (14), (13*), (14*). Две последние формулы выпол­няются для степенных зависимостей, а соотношения (13) и (14) име­ют общий характер.

Сводка соотношений для расчета погрешности косвенного измере­ния
для некоторых простых функциональных за­висимостей представлена в таблице.

Формулы для расчета погрешностей

;

Пример. Пусть джоулево тепло Q рассчитывается по формуле

Поскольку это степенная зависимость, целесообразно воспользоваться формулой (13*)

Правила представления результатов измерений и их погрешностей

Погрешности могут лишь оцениваться, поэтому обычно достаточно указать погрешность с одной значащей цифрой. Например, Δm=0,2 г.
г. Записьт = 3,0 г означает, что измерение произведено с точностью до десятых долей грамма. Однако при про­межуточных вычислениях целесообразно оставлять больше значащих цифр.

Правила округления чисел (результатов измерений) иллюстрируют­ся в таблице (обратите внимание на особенности округления цифры 5).

Таблица Округление до десятых значащих цифр

Результат измерения принято округлять так, чтобы числовое зна­чение оканчивалось цифрой того же разряда, что и значение погреш­ности. Например, запись

см.

непреемлема, т.к. само значение погрешности Δl = 0,1 см указыва­етна то, что цифры 018 результата не могут гарантироваться. Нуж­нозаписать так:
см.

Теперь необходимо рассмотреть вопрос о том, как находить погрешность физической величины U , которая определяется путем косвенных измерений. Общий вид уравнения измерения

Y =f (Х 1 , Х 2 , … , Х n ), (1.4)

где Х j – различные физические величины, которые получены экспериментатором путем прямых измерений, или физические константы, известные с заданной точностью. В формуле они являются аргументами функции.

В практике измерений широко используют два способа расчета погрешности косвенных измерений. Оба способа дают практически одинаковый результат.

Способ 1. Сначала находится абсолютная D, а затем относительная d погрешности. Этот способ рекомендуется для таких уравнений измерения, которые содержат суммы и разности аргументов.

Общая формула для расчета абсолютной погрешности при косвенных измерениях физической величины Y для произвольного вида f функции имеет вид:

где частные производные функции Y =f (Х 1 , Х 2 , … , Х n ) по аргументу Х j ,

Общая погрешность прямых измерений величины Х j .

Для нахождения относительной погрешности нужно прежде всего найти среднее значение величины Y . Для этого в уравнение измерения (1.4) надо подставить средние арифметические значения величин X j .

То есть среднее значение величины Y равно: . Теперь легко найти относительную погрешность: .

Пример: найти погрешность измерения объёма V цилиндра. Высоту h и диаметр D цилиндра считаем определёнными путём прямых измерений, причём пусть количество измерений n= 10.

Формула для расчета объёма цилиндра, то есть уравнение измерения имеет вид:

Пусть при Р= 0,68;

При Р= 0,68.

Тогда, подставляя в формулу (1.5) средние значения, найдём:

Погрешность D V в данном примере зависит, как видно, в основном от погрешности измерения диаметра.

Средний объём равен: , относительная погрешность d V равна:

Или d V = 19%.

V =(47±9) мм 3 , d V = 19%, Р= 0,68.

Способ 2. Этот способ определения погрешности косвенных измерений отличается от первого способа меньшими математическими трудностями, поэтому его чаще используют.

В начале находят относительную погрешность d , и только затем абсолютную D. Особенно удобен этот способ, если уравнение измерения содержит только произведения и отношения аргументов.

Порядок действий можно рассмотреть на том же конкретном примере - определение погрешности при измерении объёма цилиндра

Все численные значения входящих в формулу величин сохраним теми же, что и при расчетах по способу 1.

Пусть мм , ; при Р= 0,68;

; при Р=0,68.

Погрешность округления числа p (см. рис. 1.1)

При использовании способа 2 следует действовать так:

1) прологарифмировать уравнение измерения (берём натуральный логарифм)

найти дифференциалы от левой и правой частей, считая независимыми переменными,

2) заменить дифференциал каждой величины на абсолютную погрешность этой же величины, а знаки “минус”, если же они есть перед погрешностями на “плюс”:

3) казалось бы, что с помощью этой формулы уже можно дать оценку для относительной погрешности , однако это не так. Требуется так оценить погрешность, чтобы доверительная вероятность этой оценки совпадала с доверительными вероятностями оценки погрешностей тех членов, которые стоят в правой части формулы. Для этого, чтобы это условие выполнялось, нужно все члены последней формулы возвести в квадрат, а затем извлечь корень квадратный из обеих частей уравнения:

Или в других обозначениях относительная погрешность объёма равна:

причём вероятность этой оценки погрешности объёма будет совпадать с вероятностью оценки погрешностей входящих в подкоренное выражение членов:

Сделав вычисления, убедимся, что результат совпадает с оценкой по способу 1 :

Теперь, зная относительную погрешность, находим абсолютную:

D V =0,19 · 47=9,4 мм 3 , P =0,68.

Окончательный результат после округления:

V = (47 ± 9) мм 3 , d V = 19%, P =0,68.

Контрольные вопросы

1. В чём заключается задача физических измерений?

2. Какие типы измерений различают?

3. Как классифицируют погрешности измерений?

4. Что такое абсолютная и относительная погрешности?

5. Что такое промахи, систематические и случайные погрешности?

6. Как оценить систематическую погрешность?

7. Что такое среднее арифметическое значение измеренной величины?

8. Как оценить величину случайной погрешности, как она связана со средним квадратичным отклонением?

9. Чему равна вероятность обнаружения истинного значение измеренной величины в интервале от Х ср - s до Х ср + s ?

10. Если в качестве оценки для случайной погрешности выбрать величину 2s или 3s , то с какой вероятностью истинное значение будет попадать в определённые этими оценками интервалы?

11. Как суммировать погрешности и когда это нужно делать?

12. Как округлить абсолютную погрешность и среднее значение результата измерения?

13. Какие способы существуют для оценки погрешностей при косвенных измерениях? Как при этом действовать?

14. Что нужно записать в качестве результата измерения? Какие величины указать?

Обучение